High-order schemes for acoustic waveform simulation

Seongjai Kim 1, Hyeona Lim ∗

Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762-5921, USA
Available online 23 June 2006

Abstract

This article introduces a new fourth-order implicit time-stepping scheme for the numerical solution of the acoustic wave equation, as a variant of the conventional modified equation method. For an efficient simulation, the scheme incorporates a locally one-dimensional (LOD) procedure having the splitting error of $O(\Delta t^4)$. Its stability and accuracy are compared with those of the standard explicit fourth-order scheme. It has been observed from various experiments for 2D problems that (a) the computational cost of the implicit LOD algorithm is only about 40% higher than that of the explicit method, for the problems of the same size, (b) the implicit LOD method produces less dispersive solutions in heterogeneous media, and (c) its numerical stability and accuracy match well those of the explicit method.

© 2006 IMACS. Published by Elsevier B.V. All rights reserved.

MSC: 65M06; 65M12

Keywords: Acoustic wave; High-order method; Locally one-dimensional (LOD) method; Nonphysical dispersion

1. Introduction

Let $\Omega \subset \mathbb{R}^m$, $1 \leq m \leq 3$, be a bounded domain with its boundary $\Gamma = \partial \Omega$ and $J = (0, T]$ the time interval, $T > 0$. Consider the following acoustic wave equation:

\begin{align}
(a) \quad & \frac{1}{c^2} u_{tt} - \Delta u = S(x, t), \quad (x, t) \in \Omega \times J, \\
(b) \quad & \frac{1}{c} u_t + u_x = 0, \quad (x, t) \in \Gamma \times J, \\
(c) \quad & u(x, 0) = g_0(x), \quad u_t(x, 0) = g_1(x), \quad x \in \Omega, \ t = 0,
\end{align}

where $c = c(x) > 0$ denotes the normal velocity of the wavefront, S is the wave source/sink, ν denote the unit outer normal from Γ, and g_0 and g_1 are initial data.

Wave problems are often formulated in an unbounded domain. These problems can be solved numerically by first truncating the given unbounded domain, imposing a suitable absorbing boundary condition (ABC) on the (artificial) boundary of the truncated bounded domain, and then solving the resulting problem using discretization methods (e.g.,...
finite differences, finite elements, and spectral methods). Eq. (1.b) has been popular as a simple-but-effective ABC, since introduced by Clayton and Engquist [3]. Eq. (1) has been extensively studied as a model problem for second-order hyperbolic problems by many authors; see, e.g. [1,2,5,10,11,13]. It is often the case that the source is given in the following form

$$S(x, t) = \delta(x - x_s)f(t),$$

where $x_s \in \Omega$ is the source point. For the function f, the Ricker wavelet of frequency ν can be chosen, i.e.,

$$f(t) = \pi^2 \nu^2 \left(1 - 2\pi^2 \nu^2 t^2\right) e^{-\pi^2 \nu^2 t^2}.$$

In Geophysical applications, the wave equation (1) is often solved by explicit time-stepping schemes, which require to choose the time step size sufficiently small to satisfy the stability condition and to reduce numerical dispersion as well. Alternative conventional approaches for solving wave equations introduce an auxiliary variable to rewrite the equation as a first-order hyperbolic system. With these approaches one introduces new unknowns, which result in an increase in the number of variables in the discrete problems. Thus, there are good reasons to try to keep the formulation involving the second time-derivative and a scalar unknown. However, it has been known that with this formulation it is hard to construct methods combining good stability with high accuracy. In particular, it is hard to incorporate a high-order approximation of the ABC. In this paper we shall introduce a one-parameter family of three-level methods incorporating the locally one-dimensional (LOD) time-stepping procedure for an efficient simulation. It is analyzed to be unconditionally stable for the parameter in a certain range.

An outline of the article is as follows. In the next section, we first review the conventional methods: explicit (three-level) schemes and the two-level implicit scheme. Section 3 introduces a new three-level implicit scheme. A locally one-dimensional (LOD) perturbation having the splitting error in $O(\Delta t^4)$ is considered for an efficient simulation. Its stability and computational complexity are compared with those of the standard explicit fourth-order scheme in the same section. In Section 4, we present some numerical results showing numerical stability, efficiency, and accuracy of the new scheme. In Section 5, we discuss strategies of incorporating high-order approximations of the ABC. The last section includes conclusions.

2. Preliminaries

In this section, we review conventional methods for the numerical solution of the wave equation (1). Let \mathcal{A} denote an approximation of $-\Delta$ of order p, i.e.,

$$\mathcal{A}u \approx -\Delta u + O(h^p),$$

where h is the grid size; in most cases, p is 2 or 4. Then, the semi-discrete equation for the acoustic wave equation reads

$$\frac{1}{c^2} v_{tt} + \mathcal{A}v = S. \quad (2)$$

(Here we have omitted the equations for the boundary and initial conditions, for a simpler presentation.)

It now remains to discretize the second-order system of ODEs (2) with respect to the time variable. Let Δt be the time step size and $t^n = n \Delta t$. Define $v^n(x) = v(x, t^n)$. For a simpler presentation, we define the following difference operator

$$\tilde{\partial}_{tt} v^n := \frac{v^{n+1} - 2v^n + v^{n-1}}{\Delta t^2}.$$

2.1. Explicit schemes

Explicit methods are still popular in the simulation of waveforms. We begin with the second-order scheme (in time) formulated as

$$\frac{1}{c^2} \tilde{\partial}_{tt} v^n + \mathcal{A}v^n = S^n. \quad (3)$$
As a stability constraint, the scheme requires to choose
\[\Delta t = O(h). \]

The scheme (3) works well for smooth solutions, but otherwise it can introduce severe nonphysical oscillations.

To formulate the fourth-order scheme (in time), consider the Taylor expansion
\[v_{ttt}^n(\tau_{1}^{n}) \approx \Delta t^2 \frac{v_{tttt}^n(\tau_{1}^{n})}{12} + O(\Delta t^4). \] (4)

It follows from (2) that
\[v_{tttt}^n(\tau_{1}^{n}) = c^2 (S_{tt}^n - \mathcal{A} v_{tt}^n) = c^2 [S_{tt}^n - \mathcal{A} (c^2 (S^n - \mathcal{A} v^n))]. \] (5)

Utilizing the above identity, (4) can be rewritten as
\[v_{tt}^n(\tau_{1}^{n}) \approx \Delta t^2 \frac{c^2}{12} [S_{tt}^n - \mathcal{A} (c^2 (S^n - \mathcal{A} v^n))] + O(\Delta t^4) \]
\[\approx \Delta t^2 \frac{c^2}{12} [\bar{S}_{tt}^n + \mathcal{A} (c^2 (S^n - \mathcal{A} v^n))] + O(\Delta t^4), \] (6)

where we have used \(S_{tt}^n \approx \bar{S}_{tt}^n + O(\Delta t^2) \). Thus the explicit fourth-order algorithm reads
\[\frac{1}{c^2} \bar{S}_{tt}^n v^n + A (v^n - \Delta t^2 \frac{c^2}{12} \mathcal{A} v^n) = S^n + \Delta t^2 \frac{c^2}{12} (\bar{S}_{tt}^n - \mathcal{A} c^2 S^n) \] (7)

or, equivalently,
\[v^{n+1} = 2v^n - v^{n-1} - \Delta t^2 c^2 \mathcal{A} (v^n - \Delta t^2 \frac{c^2}{12} \mathcal{A} v^n) + \Delta t^2 \frac{c^2}{12} [S^n + \Delta t^2 \frac{c^2}{12} (\bar{S}_{tt}^n - \mathcal{A} c^2 S^n)]. \] (8)

See [4,5,14] for details.

Remark. In the wave simulation using (8), the quantity \(\Delta t^2 c^2 \) can be pre-computed and saved in a vector. When the fourth-order central FD scheme is adopted for the spatial derivatives \((p = 4) \), the matrix \(\mathcal{A} \) has 13 nonzero entries in a row for 3D problems. Thus a matrix–vector multiplication, \(\mathcal{A} v \), requires 13 flops per point. It is not difficult to see that the algorithm needs 30 flops per point (in a time level) for 3D problems. For 2D problems, the algorithm requires 22 flops per point.

2.2. Two-level implicit schemes

Rewrite the system (2) as
\[\begin{align*}
\eta_t + \mathcal{A} v &= S, \\
\frac{1}{c^2} v_t - \eta &= 0,
\end{align*} \] (9)

where \(\eta \) is an auxiliary variable. Then, the two-level implicit scheme can be formulated as follows [9]:
\[\begin{align*}
(a) \quad & \frac{\eta^{n+1} - \eta^n}{\Delta t} + \mathcal{A} [\alpha v^{n+1} + (1 - \alpha) v^n] = S^{n+\alpha}, \\
(b) \quad & \frac{1}{c^2} \frac{v^{n+1} - v^n}{\Delta t} - [\beta \eta^{n+1} + (1 - \beta) \eta^n] = 0,
\end{align*} \] (10)

where \(0 \leq \alpha, \beta \leq 1 \) are algorithm parameters and \(S^{n+\alpha} = \alpha S^{n+1} + (1 - \alpha) S^n \). In the literature, the following is well known for the two-level algorithm (see e.g. [9, §9.11]):

- The algorithm (10) is unconditionally stable when \(\alpha, \beta \geq 0.5 \).
- It is second-order if \((\alpha, \beta) = (0.5, 0.5) \), for example.
- It coincides with the explicit second-order scheme (3) when \((\alpha, \beta) = (0, 1) \).
The case \((\alpha, \beta) = (0.5, 0.5)\) is particularly interesting, because it allows the algorithm to be both second-order accurate (in time) and unconditionally stable. For an efficient implementation, (10) can be reformulated as follows. Multiply (10.a) and (10.b) by \(\beta \Delta t^2\) and \(\Delta t\), respectively, and add the resulting equations to have

\[
\left(\frac{1}{c^2} + \alpha \beta \Delta t^2 A\right) v^{n+1} = \left(\frac{1}{c^2} - (1 - \alpha) \beta \Delta t^2 A\right) v^n + \Delta t \eta^n + \beta \Delta t^2 S^{n+\alpha}.
\]

(11)

Along with (10.b) and \(\eta^n = v^0_{i}/c^2 = g_{1}/c^2\), the above equation solves the problem. When \(\alpha = \beta = 1/2\), the resulting algorithm reads

(a) \[
\left(\frac{1}{c^2} + \frac{\Delta t^2}{4} A\right) v^{n+1} = \left(\frac{1}{c^2} - \frac{\Delta t^2}{4} A\right) v^n + \Delta t \eta^n + \frac{\Delta t^2}{2} S^{n+1/2},
\]

(b) \[
\eta^{n+1} = -\eta^n + \frac{2}{c^2 \Delta t} (v^{n+1} - v^n).
\]

Note that solving (12.a) requires inverting a matrix, presumably large. However, since the matrix is symmetric and strongly diagonally dominant, most iterative algebraic solvers must converge fast unless \(\Delta t\) is selected unreasonably large.

For a purpose of comparison with the three-level algorithms to be presented in the next section, we shall reformulate (10) by eliminating \(\eta^n\) and \(\eta^{n+1}\). Multiply (10.a) by \((1 - \beta) \Delta t\) and subtract (10.b) from the resulting equation to have

\[
\eta^{n+1} = (1 - \beta) \Delta t \left(S^{n+\alpha} - A[\alpha v^{n+1} + (1 - \alpha) v^n]\right) + \frac{1}{c^2} \frac{v^{n+1} - v^n}{\Delta t}.
\]

(13)

Take \(\eta^n\) from (13) to plug in (11). Then the two-level algorithm (10) equivalently reads, for \(n \geq 1\),

\[
\frac{1}{c^2} \partial_{tt} v^n + A(\alpha \beta v^{n+1} + (\alpha + \beta - 2 \alpha \beta) v^n + (1 - \alpha)(1 - \beta) v^{n-1}) = \beta S^{n+\alpha} + (1 - \beta) S^{n-1+\alpha}.
\]

(14)

3. New approaches

In this section, we first introduce a three-level implicit method for solving the acoustic wave equation (1). For an efficient simulation, a locally one-dimensional (LOD) method is adopted for the problem in rectangular or cubic domains (Section 3.2). Later subsections of this section include stability analysis, fourth-order accuracy in time, an efficient treatment of ABC, and comparisons of computational complexity between the conventional explicit method and the new implicit method.

3.1. The three-level implicit method

We suggest a three-level implicit time-stepping algorithm for the acoustic wave equation (1) as follows: Given \(v^0, \ldots, v^n, n \geq 1\), find \(v^{n+1}\) by solving

\[
\frac{1}{c^2} \partial_{tt} v^n + A(\theta v^{n+1} + (1 - 2 \theta) v^n + \theta v^{n-1}) = S^n + \theta \Delta t^2 \partial_{tt} S^n,
\]

where \(\theta\) is an algorithm parameter to be selected in \([0, 0.5]\). Note that

\[
S^n + \theta \Delta t^2 \partial_{tt} S^n = \theta S^{n+1} + (1 - 2 \theta) S^n + \theta S^{n-1}.
\]

One can verify the following:

- The truncation error of (15) is \(O(\Delta t^2 + h^p)\), \(p \geq 2\), for every \(\theta \in [0, 0.5]\).
- When \(\theta = 0\), (15) turns out to be the second-order explicit scheme (3).
- When \(\theta = 1/12\), the truncation error of (15) becomes \(O(\Delta t^4 + h^p)\); see Section 3.4.
- The algorithm is unconditionally stable when \(\theta \in [0.25, 0.5]\). (See Section 3.3 below.)
- We can see from a comparison between (14) and (15) that the two-level and three-level implicit algorithms are equivalent to each other, when \(\alpha = \beta = 0.5\) and \(\theta = 0.25\).
They are also equivalent when \(\alpha = r_1, \beta = r_2, \) and \(\theta = 1/12, \) where \(r_1 \) and \(r_2 \) are the two zeros of \(x^2 - x + 1/12 = 0. \) With these parameters, the algorithms are fourth-order accurate in time.

The implicit method (15) requires an appropriate initialization for \(v^1. \) Recall the initial conditions given in (1.c) and the Taylor series expansion

\[
u^1 = u^0 + \Delta t u^0_t + \frac{\Delta t^2}{2} u^0_{tt} + \frac{\Delta t^3}{3!} u^0_{ttt} + \frac{\Delta t^4}{4!} u^0_{tttt} + \mathcal{O}(\Delta t^5). \tag{16}
\]

Consider the equalities

\[
u^0_t = g_1, \quad u^0_{tt} = c^2 (S^0 - Ag_0), \quad u^0_{ttt} = c^2 (S^0_t - Ag_1), \quad u_{tttt} = c^2 [S^0_{tt} - A(c^2 (S^0 - Ag_0))], \tag{17}
\]

and approximations

\[
S^0_t \approx -3S^0 + 4S^1 - S^2 \frac{2\Delta t}{\Delta t^2} + \mathcal{O}(\Delta t^2), \\
S^0_{tt} \approx \frac{S^0 - 2S^1 + S^2}{\Delta t^2} + \mathcal{O}(\Delta t). \tag{18}
\]

Then, it follows from (16)–(18) that

(a) \(v^1 \approx g_0 + \Delta t g_1 + \frac{\Delta t^2 c^2}{2} (S^0 - Ag_0) + \mathcal{O}(\Delta t^3), \)

(b) \(v^1 \approx g_0 + \Delta t g_1 + \frac{\Delta t^2 c^2}{2} \left[\frac{7S^0 + 6S^1 - S^2}{12} - A \left(g_0 + \frac{\Delta t}{3} g_1 + \frac{\Delta t^2 c^2}{12} (S^0 - Ag_0) \right) \right] + \mathcal{O}(\Delta t^5). \tag{19}
\]

The initial values in (19.a) and (19.b) can be adopted respectively for the second- and fourth-order methods in time.

3.2. The LOD procedure

In many applications including Geophysical ones, the domain is rectangular or cubic. To solve the implicit algorithm (15) efficiently in these regular domains, we can adopt a locally one-dimensional (LOD) method, in particular, the alternating direction implicit (ADI) method [6–8,12]. We will formulate the LOD procedure for 3D problems. Decompose \(A \) into the three directional operators \(A_\ell, \ell = 1, 2, 3, \) i.e.,

\[
A = A_1 + A_2 + A_3,
\]

where \(A_\ell \) is the \(p \)-th order FD approximation of \(-\partial_{\ell x_\ell} \). Then, as a perturbation of (15), an LOD time-stepping procedure can be constructed as follows. Given \(w^0, \ldots, w^n, \) first approximate the solution at \(t^{n+1} \) by the explicit scheme:

\[
\frac{1}{c^2} \frac{w^{n+1,0} - 2w^n + w^{n-1}}{\Delta t^2} + A w^n = S^n + \theta \Delta t^2 \partial_{tt} S^n, \tag{20}
\]

and then apply the implicit directional sweeps

\[
\frac{1}{c^2} \frac{w^{n+1,1} - w^n_{+1,0}}{\Delta t^2} + \theta A_1 (w^{n+1,1} - 2w^n + w^{n-1}) = 0 \quad (x\text{-sweep}), \\
\frac{1}{c^2} \frac{w^{n+1,2} - w^n_{+1,1}}{\Delta t^2} + \theta A_2 (w^{n+1,2} - 2w^n + w^{n-1}) = 0 \quad (y\text{-sweep}), \\
\frac{1}{c^2} \frac{w^{n+1,3} - w^n_{+1,2}}{\Delta t^2} + \theta A_3 (w^{n+1,3} - 2w^n + w^{n-1}) = 0 \quad (z\text{-sweep}). \tag{21}
\]
To find the error involved during the LOD-perturbation, we will eliminate the intermediate values in (20)–(21). Adding the four equations in (20)–(21), followed by some algebra, reads

\[
\frac{1}{c^2} \partial_{tt} w^n + A(\partial_t w^{n+1} + (1 - 2\theta) w^n + \theta w^{n-1}) + B_\theta(w^{n+1} - 2w^n + w^{n-1}) = S^n + \theta \Delta t^2 \partial_t S^n,
\]

where

\[
B_\theta = \theta^2 \Delta t^2 c^2(A_1 A_2 + A_1 A_3 + A_2 A_3) + \theta^3(\Delta t^2 c^2)^2 A_1 A_2 A_3.
\]

Compared with (15), the LOD algorithm (20)–(21) incorporates an extra term \(B_\theta\)(\(w^{n+1} - 2w^n + w^{n-1}\)), which results from the LOD operator splitting and is called the splitting error. Since \((w^{n+1} - 2w^n + w^{n-1}) = O(\Delta t^2)\) for sufficiently smooth solutions, the splitting error turns out to be fourth-order in time, i.e.,

\[
B_\theta(w^{n+1} - 2w^n + w^{n-1}) = O(\Delta t^4).
\]

Thus the LOD algorithm (20)–(21) solves the three-level implicit difference equation (15) accurately, with an extra error (splitting error) in \(O(\Delta t^4)\).

For 2D problems, the \(z\)-sweep in (21) must be omitted and \(w^{n+1,2}\) becomes the solution in the new time level, i.e.,

\[
w^{n+1} = w^{n+1,2}.
\]

We can find the splitting error for 2D problems to be \(B_\theta(w^{n+1} - 2w^n + w^{n-1})\), where

\[
B_\theta = \theta^2 \Delta t^2 c^2 A_1 A_2.
\]

Thus the splitting error is again \(O(\Delta t^4)\) for sufficiently smooth solutions.

As investigated in [7], the splitting error of the LOD algorithm can be much larger than the truncation error (although they show the same order in \(\Delta t\)) unless the time step size is sufficiently small. However, one can virtually eliminate the splitting error as follows. If we could add \(B_\theta(w^{n+1} - 2w^n + w^{n-1})\) to the right-hand side of (20), then we could cancel the perturbation term in (22) completely; but since we do not know \(w^{n+1}\) at the moment of solving (20), we cannot make this modification in the algorithm. Our best estimate for \(B_\theta(w^{n+1} - 2w^n + w^{n-1})\) is \(B_\theta(w^n - 2w^{n-1} + w^{n-2})\), which we can add to the right side of (20). Then, the overall splitting error for this modified LOD algorithm becomes

\[
B_\theta(w^{n+1} - 3w^n + 3w^{n-1} - w^{n-2}),
\]

which is \(O(\Delta t^5)\) for sufficiently smooth solutions. We will not try to address further details in that direction; see [7] for the virtual elimination of the splitting error for the numerical solution of the heat equation.

A few more comments are in order for the LOD algorithm (20)–(21).

- Solving the directional sweeps requires to invert a series of tri- or quanta-diagonal matrices, which is not expensive much.
- The LOD algorithm is unconditionally stable when \(\theta \in [0.25, 0.5]\); see Section 3.3.
- The LOD algorithm, (20)–(21), can be implemented as follows:

\[
\begin{align*}
\tilde{w}'^n &= 2w^n - w^{n-1}, \\
 w^{n+1,0} &= \tilde{w}'^n + \Delta t^2 c^2(S^n + \theta \Delta t^2 \partial_t S^n - A w^n), \\
 (I + \theta \Delta t^2 c^2 A_1) w^{n+1,1} &= w^{n+1,0} + \theta \Delta t^2 c^2 A_1 \tilde{w}'^n, \\
 (I + \theta \Delta t^2 c^2 A_2) w^{n+1,2} &= w^{n+1,1} + \theta \Delta t^2 c^2 A_2 \tilde{w}'^n, \\
 (I + \theta \Delta t^2 c^2 A_3) w^{n+1} &= w^{n+1,2} + \theta \Delta t^2 c^2 A_3 \tilde{w}'^n.
\end{align*}
\]

3.3. Stability analysis

In this section, we present a stability analysis for the three-level implicit algorithm (15) and its LOD procedure (20)–(21).

Theorem 3.1. Let \(\theta \in [0.25, 0.5]\). Then (15) and its LOD procedure (20)–(21) are unconditionally stable.
Proof. It suffices to show the stability of the LOD procedure (22); stability of (15) follows by replacing \(w^n \) by \(v^n \) and setting \(B_0 = 0 \).

Let \(\| \cdot \| \) denote the \(L^2(\Omega) \) or \(\ell^2 \) norm, as appropriate. (That is, depending on the spatial discretization by finite elements or finite differences.) Define difference operators

\[
\partial_t^- w^n := \frac{w^n - w^{n-1}}{\Delta t}, \quad \partial_t^+ w^n := \frac{w^{n+1} - w^n}{\Delta t}, \quad \tilde{\partial}_t := (\partial_t^+ + \partial_t^-)/2.
\]

Then

\[
\tilde{\partial}_t := (\partial_t^+ - \partial_t^-)/\Delta t.
\]

Choose \(\tilde{\partial}_t w^n \) as a test function for (22). Then, for \(n \geq 1 \),

\[
\left(\left(\frac{1}{c^2} + \Delta t^2 B_0 \right) \tilde{\partial}_t w^n, \tilde{\partial}_t w^n \right) + \left(A[\theta w^{n+1} + (1 - 2\theta) w^n + \theta w^{n-1}], \tilde{\partial}_t w^n \right) = 0,
\]

where we have set \(S \equiv 0 \).

Multiply (25) by \(\Delta t \) and sum beginning at \(n = 1 \) to have

\[
\sum_{j=1}^{n} \left(\left(\frac{1}{c^2} + \Delta t^2 B_0 \right) \tilde{\partial}_t w^j, \tilde{\partial}_t w^j \right) \Delta t + \sum_{j=1}^{n} \left(A[\theta w^{j+1} + (1 - 2\theta) w^j + \theta w^{j-1}], \tilde{\partial}_t w^j \right) \Delta t = 0.
\]

Consider the following identities

\[
\left(\left(\frac{1}{c^2} + \Delta t^2 B_0 \right) \tilde{\partial}_t w^j, \tilde{\partial}_t w^j \right) \Delta t
\]

\[
= \frac{1}{2} \left(\left(\frac{1}{c^2} + \Delta t^2 B_0 \right) (\partial_t^+ - \partial_t^-) w^j, (\partial_t^+ + \partial_t^-) w^j \right)
\]

\[
= \frac{1}{2} \left\| \left(\frac{1}{c^2} + \Delta t^2 B_0 \right)^{1/2} \partial_t^+ w^j \right\|^2 - \frac{1}{2} \left\| \left(\frac{1}{c^2} + \Delta t^2 B_0 \right)^{1/2} \partial_t^- w^j \right\|^2,
\]

\[
(A[\theta w^{j+1} + (1 - 2\theta) w^j + \theta w^{j-1}], \tilde{\partial}_t w^j) \Delta t
\]

\[
= \frac{1}{2} \left(A[\theta (w^{j+1} + w^{j-1}) + (1 - 2\theta) w^j], w^{j+1} - w^{j-1} \right)
\]

\[
= \frac{1}{2} \mathcal{P}^+(w^j, \theta) - \frac{1}{2} \mathcal{P}^-(w^j, \theta),
\]

where

\[
\mathcal{P}^\pm(w^j, \theta) := \theta (A w^j, w^j) + (1 - 2\theta) (A w^j, w^j),
\]

Since

\[
\partial_t^- w^j = \partial_t^+ w^{j-1}, \quad \mathcal{P}^-(w^j, \theta) = \mathcal{P}^+(w^{j-1}, \theta),
\]

it follows from (26) and (27) that

\[
\left\| \left(\frac{1}{c^2} + \Delta t^2 B_0 \right)^{1/2} \partial_t^+ w^n \right\|^2 + \mathcal{P}^+(w^n, \theta) \leq \left\| \left(\frac{1}{c^2} + \Delta t^2 B_0 \right)^{1/2} \partial_t^+ w^0 \right\|^2 + \mathcal{P}^+(w^0, \theta).
\]

Note that \(\mathcal{P}^\pm(w^j, \theta) \geq 0 \), for \(\theta \in [0.25, 0.5] \), which completes the proof.

3.4. Fourth-order accuracy in time (\(\theta = 1/12 \))

When \(\theta = 1/12 \), the algorithms (15) and (20)–(21) become fourth-order in time. To see this, recall the Taylor expansion for \(v_{ttt}(t^n) \) in (4). Utilize the identity

\[
v_{tttt}(t^n) = c^2 \left(S^0_{ttt} - A v^n_{tt} \right)
\]
to rewrite (4) as

$$v_{tt}(t^n) \approx \frac{\Delta t^2}{12} c^2 (S^n_{tt} - A v^n_{tt}) + O(\Delta t^4)$$

$$\approx \frac{\Delta t^2}{12} c^2 \partial_{tt}^{1/2} S^n + \frac{c^2}{12} A (v^{n+1} - 2v^n + v^{n-1}) + O(\Delta t^4),$$

(30)

where the central second-order approximations are applied for S^n_{tt} and v^n_{tt}. Thus a fourth-order time-stepping algorithm can be formulated as

$$\frac{1}{c^2} \partial_{tt}^{1/2} v^n + \frac{1}{12} A (v^{n+1} - 2v^n + v^{n-1}) + A v^n = S^n + \frac{\Delta t^2}{12} \partial_{tt}^{1/2} S^n,$$

(31)

which is identical to (15) when $\theta = 1/12$. The LOD variant of (31) clearly reads

$$\frac{1}{c^2} \partial_{tt}^{1/2} v^n + \frac{1}{12} A (v^{n+1} - 2v^n + v^{n-1}) + A v^n + B_{1/12} (v^{n+1} - 2v^n + v^{n-1}) = S^n + \frac{\Delta t^2}{12} \partial_{tt}^{1/2} S^n,$$

(32)

which is equivalent to (20)–(21) when $\theta = 1/12$. □

Remark. The conventional fourth-order explicit scheme utilizes the identity (5) for the approximation of v^{tttt}, while the new implicit method employs (29). As a result, the implicit method adopts a more compact set of grid points in the FD approximation. See Fig. 1, where the FD stencils are depicted for the fourth-order explicit scheme (left) and the fourth-order implicit scheme (right), in one spatial variable. The fourth-order explicit scheme utilizes values at 33 and 73 grid points in the nth time level for 2D and 3D problems, respectively.

3.4. The absorbing boundary condition

The ABC in its second-order approximation can be formulated as

$$\frac{1}{c} \left(v^{n+1} - v^{n-1} \right) + (\nabla_h v^n) \cdot \nu = 0,$$

(33)

where ∇_h denotes the second-order FD approximation of the gradient ∇. It should be noticed that the ABC (33) involves no spatial approximations on the $(n+1)$th time level. Thus, the LOD algorithm can incorporate the ABC in its explicit step only, and the implicit directional sweeps are carried out with a Dirichlet boundary condition. This strategy clearly imposes the second-order approximation of the ABC on all time levels. For higher-order approximations, see discussions in Section 5.

3.6. Computational complexity

One of main goals in this article is to compare accuracy and efficiency of the fourth-order algorithms, (8) and (32), with A_{ℓ} being the fourth-order FD approximations of $-\partial^2/\partial x^2$.

In the implementation of the LOD algorithm (24) for 3D problems, one can pre-compute $(I + \theta \Delta t^2 c^2 A_{\ell})$, $\ell = 1, 2, 3$, and save their LU-factorizations. When the central fourth-order scheme is used for the spatial derivatives, the explicit step in (24) needs 14 flops per point and each directional step can be carried out for 11 flops per point (6 for the right side and 5 for the inversion of the L and U matrices). Thus the total number of required operations is 48 per point, which is only 60% more than that of the fourth-order explicit method (8).
For 2D problems, the matrix \mathcal{A} contains 9 nonzero entries in a row for the central fourth-order scheme in space. Thus the required flops per point for (8) and (20)–(21) are 22 and 33, respectively. The LOD (implicit) method is only 50% more expensive than the explicit method.

Since the LOD algorithm shows implicit features, it can be either more flexible in choosing the time step size or less dispersive than the explicit method. (Note that when $\theta \in [0.25, 0.5]$, the LOD algorithm is unconditionally stable, although it turns out to be second-order accurate in time.) Employing various numerical examples, we will investigate if the implicit method is less dispersive or allows a larger time step size for a stable solution. Also we will numerically verify and compare nonphysical oscillations introduced by these two fourth-order schemes for the acoustic wave propagation in realistic media.

4. Numerical experiments

The fourth-order explicit method (8) and the LOD algorithm (24) are implemented for the acoustic wave equation in two space variables. For the spatial derivatives, the fourth-order FD scheme is adopted for both algorithms. The core of the calculation is carried out on a 3.20 GHz desktop with a Linux operating system. In order to check numerical errors of the algorithms solving (1), we set the domain and a constant sound velocity as

$$\Omega = (-a, a)^2, \quad a > 0; \quad c(x, y) \equiv c_0 > 0.$$

Select a true solution u as follows:

$$u(x, y, t) = \frac{\sin(\omega x^2 + y^2 - 2ac_0t)}{\omega}, \quad (x, y, t) \in \Omega \times J,$$

where $\omega(\equiv 2\pi f)$, with f being the frequency, is the angular frequency. One can easily verify that the solution u in (34) satisfies the ABC (1.1b) on the boundary for $t \geq 0$. We will measure the error by the maximum (L^∞) and the least-squares (L^2) norms at $t = T$, respectively defined by

$$E_{\infty,T} = \max_{i,j} \left| u(x_{ij}, T) - w(x_{ij}, T) \right| \quad \text{and}$$

$$E_{2,T} = \left(\frac{1}{n_x \cdot n_y} \sum_{i,j} \left| u(x_{ij}, T) - w(x_{ij}, T) \right|^2 \right)^{1/2},$$

where w denotes the numerical solution for given Δt and $\Delta x = \Delta y$. Here n_x and n_y are the number of grid points in the x- and y-directions, respectively.

Table 1 presents L^∞ and L^2 errors for LOD with $\theta = 0.25$, the fourth-order explicit scheme, and LOD with $\theta = 1/12$ for various grid sizes. We select $a = 2$, $c_0 = 1$, and $\omega = 2\pi$ in Eq. (34). Set the final time $T = 1$. As one can see from the table, the algorithm shows a second-order accuracy for LOD with $\theta = 0.25$ and a fourth-order accuracy for both the fourth-order explicit scheme and LOD with $\theta = 1/12$. Errors measured in both norms indicate that the fourth-order explicit scheme and LOD with $\theta = 1/12$ are equally accurate in both L^∞ and L^2 norms.

For a dispersion analysis, we consider the error measured in H^1 norm:

$$E_{H^1,T} = \left(E_{2,T}^2 + \frac{1}{n_x \cdot n_y} \sum_{i,j} \left| \nabla (u(x_{ij}, T) - w(x_{ij}, T)) \right|^2 \right)^{1/2},$$

where ∇u and ∇w are approximated by the second-order central difference formula.

<table>
<thead>
<tr>
<th>$(\Delta t, h)$</th>
<th>LOD($\theta = 0.25$)</th>
<th>Explicit 4th-order</th>
<th>LOD($\theta = 1/12$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{\infty,T}$</td>
<td>$E_{2,T}$</td>
<td>$E_{\infty,T}$</td>
<td>$E_{2,T}$</td>
</tr>
<tr>
<td>(0.028,0.04)</td>
<td>4.68E–02</td>
<td>2.45E–02</td>
<td>6.49E–04</td>
</tr>
<tr>
<td>(0.014,0.02)</td>
<td>9.38E–03</td>
<td>5.19E–03</td>
<td>3.77E–05</td>
</tr>
<tr>
<td>(0.007,0.01)</td>
<td>2.98E–03</td>
<td>1.20E–03</td>
<td>2.23E–06</td>
</tr>
</tbody>
</table>

Table 1: The L^∞ and L^2 errors for LOD with $\theta = 0.25$ (second-order), the fourth-order explicit scheme, and LOD with $\theta = 1/12$ (fourth-order) for various grid sizes.
Table 2 shows the H^1 error at $t = T$, $E_{H^1}(T)$, for LOD with $\theta = 0.25$, the fourth-order explicit scheme, and LOD with $\theta = 1/12$ for the same grid sizes as in Table 1. As one can see from the table, the new fourth-order LOD method ($\theta = 1/12$) has the best accuracy in the H^1 norm. Note that the H^1 errors for the fourth-order explicit scheme becomes relatively worse than those of the fourth-order LOD scheme as the mesh is refined. When $h = 0.01$, the second-order LOD ($\theta = 0.25$) has a better accuracy than the fourth-order explicit scheme. The observation indicates that the LOD implicit procedure can result in less dispersive solutions than conventional explicit schemes.

Fig. 2 presents a vertical section of a real velocity in the Gulf of Mexico (a), provided from Shell Offshore Inc., and the snapshots of the numerical solution at $t = 2.2$ for the fourth-order explicit method (b), LOD with $\theta = 0.25$ (c), and the fourth-order LOD (d). For the point source, a Ricker wavelet of 10 Hz ($\nu = 10$) is located at the center of the top edge ($x_s = (4.57, 0)$). Since the velocity $c(x) \in [1.50, 4.42]$ (km/sec), the wavelength ($:= c/\nu$) varies between 150 and 442 meters. The velocity model contains 240×160 cells of the edge length 38.1 meters ($h = 38.1$). Thus the grid frequency G_f (the number of grid points per wavelength) becomes $3.94 \sim 11.60$. The time step size Δt is selected for the Courant number σ near to 0.75 such that 2.2 (the final time T) is an integer multiple of Δt, i.e.,

$$\sigma := \frac{\Delta t \|c\|_\infty}{h} \approx 0.75,$$

Table 2

The H^1 error for LOD with $\theta = 0.25$ (second-order), the fourth-order explicit scheme, and LOD with $\theta = 1/12$ (fourth-order) for various grid sizes

<table>
<thead>
<tr>
<th>$(\Delta t, h)$</th>
<th>LOD[\theta = 0.25]</th>
<th>Explicit 4th-order</th>
<th>LOD[\theta = 1/12]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.028,0.04)</td>
<td>2.18E–01</td>
<td>6.63E–02</td>
<td>2.31E–02</td>
</tr>
<tr>
<td>(0.014,0.02)</td>
<td>5.97E–02</td>
<td>3.24E–02</td>
<td>8.28E–03</td>
</tr>
<tr>
<td>(0.007,0.01)</td>
<td>1.55E–02</td>
<td>1.92E–02</td>
<td>2.99E–03</td>
</tr>
</tbody>
</table>

Fig. 2. The velocity (a) and the snapshots at $t = 2.2$ for the fourth-order explicit method (b), LOD with $\theta = 0.25$ (c), and the fourth-order LOD ($\theta = 1/12$) (d). The fourth-order central FD scheme is applied for the spatial derivatives for all cases.
where \(\|c\|_\infty \) denotes the maximum of the velocity \(c \). (2.2 = 341 \Delta t; the choice of \(\Delta t \) results in 341 time steps.) As one can see, the solution in Fig. 2(c) is smoother than other solutions. The solutions from the fourth-order methods, Figs. 2(b) and 2(d), hardly differ in comparison.

To see the differences in detail, the traces are observed and compared at a few points. Fig. 3 contains the traces recorded at \(x = (3.01, 3.01) \) (left) and \(x = (6.21, 1.03) \) (right), where the waveform is expected to oscillate a lot due to sudden changes in velocity and therefore strong reflections. The solid and dashed curves correspond to LOD (\(\theta = 1/12 \)) and the fourth-order explicit methods, respectively. As one can see from the figure, the solutions obtained from the two fourth-order methods match each other quite well. It has been observed from various experiments that

- The implicit method shows a similar numerical stability as the explicit scheme. That is, instability has been observed for a similarly large \(\Delta t \) for both methods. Thus the implicit method may not gain efficiency over the explicit method by choosing a larger time step size. They have been stable for most cases when the Courant number \(\sigma \leq \theta = 0.7 \sim 1.0 \).
- The implicit method takes about 40\% more computation time than the explicit method for 2D problems of the same size, in practice. Note that the implicit method requires 50\% more flops; see Section 3.6.
- The fourth-order LOD method is less dispersive; it often produces a less oscillatory solution (nonphysical) than the fourth-order explicit scheme. It can be advantageous for the numerical solution in very oscillatory media.
- Second-order methods (in time) produce more dissipative solutions than fourth-order methods. Thus second-order LOD methods are less attractive, although they can be unconditionally stable. A sharp resolution of wavefronts is often very important in wave simulation.

5. Discussion on accuracy of the ABC

In this section, we discuss some issues in fourth-order approximations of the ABC. First, recall the ABC in (1.b). For the time-derivative \(u_t \), the fourth-order approximation begins with

\[
\begin{align*}
 u_t(t^n) &\approx \partial_t u^n - \frac{\Delta t^2}{6} u_{ttt}(t^n) + \mathcal{O}(\Delta t^4) \\
 &= \partial_t u^n - \frac{\Delta t^2 c^2}{6} (-Au + S)_t(t^n) + \mathcal{O}(\Delta t^4) \\
 &\approx \partial_t u^n + \frac{\Delta t^2 c^2}{6} Au(t^n) - \frac{\Delta t^2 c^2}{6} \partial_t S^n + \mathcal{O}(\Delta t^4),
\end{align*}
\]

(35)
where we have utilized the identity (2). For a fourth-order approximation, the term \(A u_t(t^n) \) must be approximated by a second-order approximation. One can utilize either of the following:

\[
A u_t(t^n) \approx A \frac{\partial}{\partial t} u^n + O(\Delta t^2) \quad \text{(central),}
\]

\[
A u_t(t^n) \approx A \frac{3u^n - 4u^{n-1} + u^{n-2}}{2\Delta t} + O(\Delta t^2) \quad \text{(one-sided).}
\]

(36)

It follows from (35) and (36) that fourth-order approximations of the ABC are

\[
u_t(t^n) \approx \begin{cases}
\frac{\partial}{\partial t} (1 + \frac{\Delta x^2}{6} A) u^n - \frac{\Delta x^2}{6} \partial_t S^n + O(\Delta t^4), \\
\frac{\partial}{\partial t} u^n + \frac{\Delta x^2}{6} A \frac{3u^n - 4u^{n-1} + u^{n-2}}{2\Delta t} - \frac{\Delta x^2}{6} \partial_t S^n + O(\Delta t^4).
\end{cases}
\]

(37)

The normal derivative \(u_n \) can be naturally incorporated in FE methods. For FD methods, we need to find a detailed expression for its fourth-order approximation: either the one-sided approximation or the one as for \(u_t \). However, the fourth-order approximations of the ABC do not fit with the difference equations in (8) and (24), when an outer-bordering is to be employed. Thus, finite element (FE) methods are preferred for high-order approximations of the solution up to the boundary. The mass matrix (of a FE method) can be simplified, without a loss of accuracy, by adopting the tensorization of the Gauss–Lobatto points for the nodal points and the corresponding mass-lumping quadratures [5]. In particular, in rectangular/cubic domains, the mass matrix can be expressed as a sum of sub-matrices, each of which approximates one of directional derivatives, and therefore one can adopt the LOD procedure for an efficient simulation.

6. Conclusions

We have introduced one-parameter family of three-level implicit FD schemes for the numerical solution of the acoustic wave equation. For an efficient simulation, a locally one-dimensional (LOD) procedure, having the splitting error in \(O(\Delta t^4) \), has been adopted. It has been analyzed to be unconditionally stable (but second-order in time) when the parameter is in a certain range (\(\theta \in [0.25, 0.5] \)). Also we have seen that the algorithm is fourth-order in time when \(\theta = 1/12 \). The new algorithm is compared with the conventional two-level implicit methods; parameters are found such that the methods are equivalent to each other with either second- or fourth-order accuracy in time. The three-level fourth-order implicit method is compared with the standard (three-level) explicit method in numerical stability, accuracy, and efficiency:

- The implicit method shows a similar stability condition as the explicit scheme, in practice.
- The implicit method turns out to be 40% more expensive than the explicit method for 2D problems of the same size.
- The implicit method introduces a less nonphysical oscillation (dispersion). Due to this property, the implicit scheme can be advantageous over the explicit scheme for the waveform simulation in very oscillatory media.

References

